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Abstract

In this paper, three sorting algorithms, Bitonic
mort, Shell sort and parallel Qnicksort are studied.

We analyze the performance of these algorithms and

compare them with the empirical results obtained

from the implementations on the Symult Series 2010,

a dlstributed-memory, message-passing MIMD ma-

chine. Each sorting algorithm is a combination of

a parallel sort component and a sequential sort com-

ponent. These algorithms are designed for sorting M

elements of random integers on a N-processor ma-

chine, where M > N. We found that Bitonic sort

is the best parallel sorting algorithm for small prob-

lem size, (M/N) < 64, and the parallel Quicksort

is the best for large problem size. The new Paral-

lel Quicksort algorithm with a simple key selection

method achieves a decent speed-up comparing with

other versions of parallel Quicksort on similar parallel

machines. Although She]] sort has a worse theoret-

ical time complexity, it does achieve linear speedup

for large problem size by using a synchronisation step

to detect early termination of the sorting steps.

Introduction

As indicated by Knuth in his famous book on sorting

and searching [1]:

It would be nice if only one or two of the

sorting methods would dominate all of the

others, regardless of the application or the

computer being used. But in fact, each

method has ifJ ourg peculiar virtues .....

This remains true, if not more so, for sorting algo-

rithms on parallel machines for two reasons. First,

the performance of a parallel sorting algorithm de-

pends on the degree of parallelism it can exploit on a

"Supported by NASA Cooperative Agreemqmt NCC-2-539
and RADC ¢ontrm,ct F30602.-88-C-0135

given architecture. For example, it often makes dif-

ference on level of parallelism one could exploit on an

SIMD and on an MIMD machine. Second, the per-

formance also depends on the speed of certain criti-

cal operations the underlying parallel machine could

deliver. For example, interprocessor communica-

tion could be a dominating operation for distributed-

memory machines because parallel sorting algorithms

often require the same order of magnitude of commu-

nication steps as that of computation.

In this paper, we focus on only a class of MIMD ma-

chine on which the issue of interconnection network

is not very important, and the communication speed

is nearly balanced with the computation speed. By

choosing such seemingly general-purposed, yet real,

machine, we are able to concentrate on finding which

sorting methods, or combinations of sorting methods,

are possibly among the fastest on an MIMD machine.

We shall also confine ourselves to sorting a long list

of random input data using less number of processing

elements (or nodes). That is, the sorting problem we

are interested in is to sort M elements of random in-

tegers on an N-node MIMD machine, where M > N.

Initially, M unsorted elements are evenly distributed

to each computation node. Each node operates on

its own set of data independently, but can send or
receive data from another node. When all nodes ter-

minate, each node should hold a chunk of sorted list,

and chunks are stored in consecutive order across all

nodes such that the smallest chunk is stored in the

first node and so on. Chunk size may or may not be

M/N depending on the algorithm used.

Because of the problem nature M > N, each of

the three sorting algorithms we have implemented

is a combination of parallel sort (across nodes) and

sequential sort (for local list). We used a parallel

version of Quicksort [2], Batcher's bitonic sort [4],

and a mixture of Shell's sort and odd-even transpo-

sition sort [I] as our parallel sorting strategies, and

the UNIX/BSD qsort routine as the sequential sort-

ing method. For simplicity, we shall call our algo-



rithrns Bitonic sort, Shell sort and parallel Quicksort,

respectively, in the following text.

Quicksort is not only a fast sequential sort method,

it is also a parallel method by its divide-and-conquer

nature. The only potential problem with the efll-

clency of a parallel Quicksort is the selection of its

splitting keys. If such keys are randomly selected,

the input llst can be divided into uneven sublists and

cguse load unbalancing. Carefully calculated splitting

keys will solve this problem but the extra calculation

becomes a cost itself. So an efllcient implementation

needs to strike a balance between two extremes, which

is, fortunately, not very hard to achieve. Impres-

sive results for parallel Qulcksort have been reported

for a vector machine CDC STAR [3] and hypercube-

interconnected MIMD machines [5], among others.

Batcher's bltonic sort [4], on the other hand, has

been widely used across almost all kinds of parallel

computers - sorting networks, hypercube machines

[6], two-dimension mesh machines [9], SIMD ma_

chines [7] for its simplicity and stability. It has a time

complexity O(]og _ M) for sorting M elements, which

is reasonably ef_cient. The less known Shell sort is

also selected because it appears to be a very ei_clent

algorithm when implemented on Caltech/JPL's Hy-

percube machine [5].

In the rest of the paper, we will first introduce

the underlying machine we used in our study, and its

computation and performance model; followed by the

three sorting algorithms and their time complexities.

Then, we will discuss our empirical performance re-

sult, and address a few related issues such as how

general our result can be, and what other sorting

methods may also be considered.

Computation and Performance Model

The Symult Series 2010 system ($2010) is a

distributed-memory message-passing MIMD com-

puter consists of up to 1024 computational nodes in-

terconnected by a high speed message-routing net-

work (GigaLink). Each computational node has a
Motorola MC68020 n_croprocessor as its CPU, op-

crating at 25 MHz and augmented by the Motorola

68881 floating-point co-processor. A SUN-3 worksta-

tion is used as the front-end computer. The operating

system on the $2010 nodes is called Reactive Kernel,

and the programming environment on the front-end

computer, serving as the interface between the users

and the $2010, is called Cosmic Environment [8].

$2010 is facliitied with a fast communication net-

work, called GigaLink network. A custom-designed

message routing chip- Automatic Message Routing

Device (AMRD) -- provides fast fixed-route point-

to-point message routing using Uworm-hole" routing

algorithm. The interprocessor communication rate is

13MB/sec regardless of the distance between source
and destination. This feature makes the $2010 re-

semble to a fully-connected machine.

To characterize the machine behavior, we carefully

measured throng for many computation and commu-

nication instructions. Here are some of the thning

results useful for our sorting analysis, where one in-

teger is equivalent to four bytes:

• copy one integer from one memory location to

another, without taldng memory allocation over-

bead into account, takes about 0.45 _,s;

• memory allocation overhead per memory copy

function (bcop_/) is about g _s;

• comparison-exchange for two integers takes

about 6.8 _s;

• transmitting one integer in a typed message from

one node to another, without taking overhead

into account, takes about 0.31 /_s under low to
normal tral_c load.

• average overhead for sending a typed message

from one node to another takes about 251 _s.

In other words, if routing a message with size
._ (integers) takes time T, ou_,(X), copying a same

size message locally takes time Tcop_(K), and per-
forming compare-exchange on K integers takes time
Tcomp-,= (K), then

T.o.e.(X) = T.o_,..... _,._+ T.o..-_.t.X

= 251/_J+ 0.31pa.K

= 8#s +0.45_I.K

r__..(X) = 6.8,,.K O)

So we could conclude that, on $2010, the overhead

for each message send/receive is very large, but the

transn_slon speed is comparable to that of memory

access speed. Therefore, in our sorting algorithms,

the interprocess communication is a dominating term

when M/N is small, and it graduately reduces its

effect when M/N gets larger. Assuming the number

of compare-exchange steps is the same as the number

of messaging, then the communication overhead (i.e.

T.o..(K)/T©_m,_=(K)) is 41.4% for X = 100 and

drops to 8.2% for/_ = 1000.

In the following timing analysis, we shall assume

that each element to be sorted is represented as an

integer, for simplicity. Thus K means the number of

elements in each step of computation.



The sequential qsort routine takes an important
role in all three algorithms, it has a time complex-

ity O(KlogK) for a single $2010 node to sort K el-
ements. By experiments, we found that the timing
equation for qsort with random input data can be

represented as follows:

T,.o,(K) = O(K*oZK)=a_..K]ozK (2)

Bitonic Sort

In our implementation of this algorithm, the machine

is configured as a N-node hypercube. Initially each
node has M/N unsorted elements. Each node first
sorts its data internally using the qsort routine, and
then performs Clog N.(log N+1))/2 steps of compare-
exchange operation along all dimensions of the cube.

After running the algorithm, every nodes have M/N
elements sorted both locally and globally.

Our algorithm for each individual node is shown
below, where dim, my.n/d, and mask are the dimen-
sion of the cube, the node id, and a mask flag for

selection of nodes, respectively:

1. Sort the (M/N) elements locally in each node
using a qsort. Sort in ascending order if my.n/d
is even, in descending order if my.n/d is odd.

For i := 0 to (dim- 1) step i do (2), (3), and (4)

2. Ifthe (i+l)-bitofmy binaryaddressisI,

mask := 1;otherwise,mas/¢ := 0.

3. For j := i to 0 step -1 do

(a). exchange my (M/N) elements with my j-

th bitneighbor;(b).compare/exchange the two
listsand copy the smallerhalfintothedata area

ifmas/:= thej-thbitofmy binaryaddress;copy

the larger half into the data area otherwise.

4. Locate the maximum (or minimum) of the
bitonic sequence in each node and perform a

merge on subllsts of length M/N. The sorted
sublistisin ascendingorder ifmask = 0; other-

wise,itisindescendingorder.

Since each node has M/N elements, the time

complexity of step (1) is O(_(log_)). Each

compare-exchange iteration in (3)M takes time
T, " Tc_( N ), and there+ +

are (logN(log N + 1))/2 iterationsin total. Each

merge operation in step (4)takes time Tc_.,_,ffi(N_+

2log _), and this operation is performed log N times.

As a result, the total time for Bitonic sort, based on
our timing equations(1) and (2),can be expressed
with unittime ps asfollows:

M M
z,,,.._= oCW0osw))+

(logNC_S + I)12).(st0+ z.sTC_-))+

M M
UlogN( W + 21ogW)

M /dr
= S.SW0o,_)+

(241.4 + 3.94-_) log_ 24"+

(13.61og M + 10.T4._ + 255)1ogN (3)

The empirical timing curve for Ar = 16 is shown in

figure 1.

Shell Sort

As described earlier, here Shell sort means a method
that combines Shell's method and odd-even transpo-

sition sortasinternodesort,and qsortas sequential

sort.This algorithm,as wellas the parallelQuick-

sortalgorithm,areto be executedon a ringtopology

- the sorteddata willbe storedin the same way as

in the Bitonicsortcase,but with a slightdifference

that node addressisarranged inringtopology.Both

hypercube and ring topologiescan be easilyconfig-
ured on the S2010, without significantperformance

difference.

This algorithmhas threesteps:

1. Sort (M/N) elements locallyin each node with

qsort.

2. Do a compare-exchange operationbetween pairs

ofadjacentnodes alongthe i-thcube dimension,

fori--logN - 1,...,0.

3. Do compare-exchange operationsbetween pairs

of adjacentnodes in the ringtopology untilno

exchange ismade inallthe node.

The first part is a Shell% sort except that only
one compare-exchange operation is performed in each

hypercube dimension and the result list is partially
sorted. This part takes log N compare-exchange op-
erations in total. The second part is an odd-even

transpositionsortwhich terminateswhen no data is

exchanged inallthe node.

The number of odd-even transpositionsteps is

equalto the maximal distanceofa mispositionedel-

ement to itssortedposition.ARer the diminishing-

incrementsteps,the worst-casemaximal distanceis

(N - 2V_ + 1),where N is the number of nodes.



Given an arbitrary element a, assuming that l/and z

are the addresses of the nodes that a is located after

step (I) and after sorting, respectively. Thus, IV-z I is
the number of odd-even transposition steps required

to move a to its final position. Let a be such an ele-

ment that has maximal ll/-=[ and z < I/, now we like

to fred the minimal = for a given l/. Let the binary

address of 2/be (lh, l/2,..., I/d), where d-- log N, i.e.,

the dimension of the cube. After step (I), all the el-
ements in the nodes whose addresses can be derived

from l/by changing one or more l/i's from 1 to 0 should

be smaller than the elements in 1/. If there are ]_ al"

bits in the binary address of 1/, there will be at least

(2 _ - 1) nodes in which the elements are smaller than

those in It after step (1). Thus, the minimal element

that may be located in node l/after step (1) is al-

ways greater than the elements in the first (2 _ - 1)

nodes after sorting. In other words, the minima] a in

node l/will be stored in the 2_-th node (z = 2 a - 1)

after sorting is done. To maximize ll/- zl, we shall

find the maximal y with a proper ]c. Obviously, the

maxima] l/which has k "I" bits is the one having all

1% in the most significant bits and l/= N - 2 (a-_).

So (y- z) - (N- 2 (d-k) - 2 _ Jr I) and the maximal

(l/-- z) is equal to (N -- 2 '_/2+! Jr I) or (N -- 2_/_'Jr I)

when/_ = ,//2.

Therefore, in the worst case, there are (N-

2v/_ Jr 1) compare-exchange operations in step (3).

Each compare-exchange operation in step (2) and (3)

takes the same time as one iteration in Step (3) of

Bitonic Sorts i.e. 2Tro_,,( M/N) Jr Tcomz_-¢¢(M/N) +

Tcon(M/N). Therefore, the worst case time com-

plexity of the Shell sort is

J_f M
_/'$h,ll = 8.5_- los _ +

(N - _v'_+ logN)(_zo+ r.STN) (4)

The first term is the time for sequential sort of the

local M/iV element sublist. The real timing for the

ease N = 16 is shown in figure 1.

ParallelQulcksort

The quicksort is a dlvlde-and-conquer sorting algo-

rithm which is potentially applicable to parallelcorn-

putation. In order to get the best performance of

the quicksort, the splitting keys should be selected

with great care so that the listto be sorted can be

decomposed into two sublists of equal length. This

fact is even more important in the parallelquicksort

because the improper selection of the splittingkeys

results in load imbalance and the computation time

is determined by the slowest node.

Sin_lar to Bitonlc sort and Shell sort, the unsorted

list is stored evenly across the cube initially, i.e., each

node has _.ir/N elements in arbitrary order. After

sorting, the sorted list will be stored in the cube in

consecutive order but each node may have different

number of elements. The parallel quicksort works as

follows: First, (N-l) splitting keys are selected us-

ing a presorting algorithm. Second, the list in each

node is split into two parts according to a proper

splitting key and exchanged with its neighbor along

4t certain dimension. This splitting process repeats

log N times. At last, each node sorts its local list

with a fast sequential sorting algorithm.

The algorithm and its time-performance are de-

scribed as follows:

1. Choose k samples randomly from the _-element

sublist of each node. Find the largest and the

smallest elements in the sample, let them be

(_z, ,_in).

2. Perform the maximum and minimum operations

on each node's (maz, min) pair globally across

the nodes to find the maximum and the rnini-

mum elements, say (gmaz,gmin), in the whole

sample. This global operation is done in a bi-

nary tree manner, and it needs log 27 Jr 1 com-

munication steps, i.e., (log N _ 1). (Trot, re(2)Jr

T©,,,,p_,,(2)).

3. Equally divide (gmaz - groin) into N - 1 in-

tervals and use the N boundary elements as the

splittingkeys. Since each node only needs log N

splittingkeys, each node can use a binary search

to find all itskeys in log N steps.

4. for i := ,�ira - 1 to 0 step -I do

compare my sublist with the i-th splitting key
and divide it into two sublists.

exchange the larger sublistwith the smaller

sublistof my i-thbit neighbor

else

exchange the smaller sublist with the

larger subllstof my i-thbit neighbor

endif.

5. Sequential sort the sublistlocally.

The main part of the parallel Quick sort, i.e, step

(4), takes

M M
|og N. (2T,-o,_t,(-_ )+ Tcom_,-,.('_))

for the best case, assuming each node always hold

.M/N elements after each compare-spllttlng step.



With a good set of splitting keys, the parallel

Quicksort has a best/average time performance: 2o

18

M M 7.41_
2",_,,,_ = s.s_- log ._- + _ log Jv + 787.2 los N (s) _6

T 14
The sampling time in step I is proportional to the Spe_up

sample size in each node, which is negligible. The first 12
term of the equation is the sequentiM sorting time in IO
step (5). And the real timing in the case of N "- 16

is shown in figure 1. 8

Performance Comparison and Analysis

We have measured execution time for each of the

above three sorting algorithms for N - 8, 16, 32 and

64, and M ranges from 2e to 2 I°. Figure I shows the

timing curves with the execution time versus log M

for Iv" --- 16.

Figures 2 and 3 are speedup curves calculated from

real execution time of the three parallel algorithms for

2V -" 16 and 64, respectively.
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Figure 1. Timing on a 16-node $2010

Input lists are generated by using UNIX random

routine. The execution time is determined by the

sorting time of the slowest node. The down-loading

and up-loading (input and output) time is not con-

sidered in our experiments.

From these speed-up curves, it is observed that

the increasing communication overhead degrades the

sorting speed of small lists (for lists with 1K elements

or less) when the machine size increases. In the case

of Bitonlc sort, which has the lowest communication

overhead and is the fastest algorithm for small lists,
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Figure 2. Speedup curves on a 16-node $2010
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Figure 3. Speedup curves on a 64-node $2010

the ratio of the communication time to the computa-
tion time is more than two for small lists.

In the case of Shell sort, the timing equation 4 does

not include the time to broadcast the boolean fiag

which indicates if any exchange has been made in each

compare-exchange step in (3) of the Shell sort algo-

rithm. This value may be negligible when M _ N,

but becomes the major overhead when N gets large,

or when M _- N. Broadcasting is done in binary tree

manner which requires (log N + I) steps of message

transmission after each compare-exchange step. For

the worst case, the broadcast overhead is as high as

253.3(N- 2v/'ff+ 1)(log N+ 1). Although the parallel

sorting part of Ts_.l_ has an O(M) time complexity in

the worst case, the broadcasting step may save a lot of
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compare-exchange steps for random data input. The

empirical result shows that the parallel Shell sort can

achieve linear speed-up for large problem size random

data. See figures 2 and 3.

As to parallel Qulcksort, empirical result shows

that a presorting procedure as sL'nple as the aboved-

mentioned splitting key selection mechanism can re-

sult in very good load balancing, thus a super lin-

ear speedup is observed. A more complicated pre-

sorting algorithm based on the bitonic sort has also

been attempted, but it results in a higher overhead,

i.e., O(klog_N), for k samples each node, and a

worse load balancing than the above algorithm. Con-

sequently, we can conclude that for random data,

the simple equally-dlvided key selection method can

achieve the best performance of the parallel Quick-

sort. See figures 2 and 3.

Unlike the other two sorting algorithms, the sorted

list obtained from this algorithm is not evenly dis-

tributed in each node. This is not a problem if the

sorted list is up-loaded to the host machine without

further computation. On the other hand, if sorting

is just a part of the computation and the sorted list

needs to stay in the cube for later use, the unbalanced

data distribution may not be desirable. In this case,

we may need to rearrange the elements so that each

node keeps the same number of elements. The cost

for the redistribution needs further investigation.

Conclusions

We have implemented three sorting algorithms on

$2010, a distributed-memory message-passing MIMD

machine. These algorithms are chosen because they

can be parallellzed easily on a mesh or hypercube ar-

chitecture. Each sorting algorithm is a combination

of parallel and sequential sorting methods and has a

different time complexity.

In the parallel sorting component, Bitonlc sort

takes a fixed number of steps to sort despite of the in-

put data pattern, with time complexity O(_ log _ N).

Parallel Quicksort has a performance that depends on

how good splitting keys are selected, and it is shown

that with a little overhead of presorting this algorithm

can achieve very good load balancing, and thus a best

time performance O(_ log N). The performance of
the Shell sort is constrained by its second part, the

odd-even transposition sort, which is a slow sequen-

tial sorting algorithm. Nevertheless, by taking the

advantage of the asynchronous nature of $2010, the

parallel vers|on of the Shell/odd-even transposition

sort can be as good as the parallel Quicksort when

M _> N.

In the sequential sorting part, which is performed

on the MIN elements locallyon each processor as the

first step in Bitonic sor.t and Shell sort, or on varied

number of elements locally as the last step in parallel

Quicksort, has a time complexity O(_ log _).

The overall performance of the three algorithms is

a combination of th_ sequential performance and the

parallel sort performance. We found from our em-

pirical results, for relatively small size of problems,

]VI/N < 64 say, Bitonic sort is the best because it
has the lowest synchron_at|on overhead in the algo-

rithm. The parallel Quicksort is the best for large

problem size, which agrees with our analysis. It is in-

teresting to learn that Shell sort outperforms Bitonic

sort in the case of large problem size, which is mainly
due to the fact that the Shell sort often terminates

the sorting steps earlier. Both the parallel Qukksort

and Shell sort achieve linear speed-up comparing to

sequential qsort for large problem size on 8 to 64 pro-

cessor machines. Shell :sort is the slowest among all

for the small problem sizes because of its high syn-
chronization overhead.
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